Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species.

Identifieur interne : 003B44 ( Main/Exploration ); précédent : 003B43; suivant : 003B45

Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species.

Auteurs : B E Ewers [États-Unis] ; D S Mackay ; S. Samanta

Source :

RBID : pubmed:17169902

Descripteurs français

English descriptors

Abstract

We investigated interannual variability of canopy transpiration per unit ground area (E (C)) and per unit leaf area (E (L)) across seven tree species in northern Wisconsin over two years. These species have previously been shown to be sufficient to upscale stand-level transpiration to the landscape level during one growing season. Our objective was to test whether a simple plant hydraulic model could capture interannual variation in transpiration. Three species, wetland balsam fir (Abies balsamea (L.) Mill), basswood (Tilia Americana L.) and speckled alder (Alnus rugosa (DuRoi) Spreng), had no change in E (C) or E (L) between 2000 and 2001. Red pine (Pinus resinosa Ait) had a 57 and 19% increase in E (C) and E (L), respectively, and sugar maple (Acer saccharum Marsh) had an 83 and 41% increase in E (C) and E (L), respectively, from 2000 to 2001. Quaking aspen (Populus tremuloides Michx) had a 50 and 21% decrease in E (C) and E (L), respectively, from 2000 to 2001 in response to complete defoliation by forest tent caterpillar (Malascoma distria Hüber) and subsequent lower total leaf area index of the reflushed foliage. White cedar (Thuja occidentalis L.) had a 20% decrease in both E (C) and E (L) caused by lowered surface water in wetlands in 2001 because of lower precipitation and wetland flow management. Upland A. balsamea increased E (L) and E (C) by 55 and 53%, respectively, as a result of release from light competition of the defoliated, overstory P. tremuloides. We hypothesized that regardless of different drivers of interannual variability in E (C) and E (L), minimum leaf water potential would be regulated at the same value. Minimum midday water potentials were consistent over the two years within each of the seven species despite large changes in transpiration between years. This regulation was independently verified by the exponential saturation between daily E (C) and vapor pressure deficit (D) and the tradeoff between a reference canopy stomatal conductance (G (S)) and the sensitivity of G (S) to D, indicating that trees with high G (S) must decrease G (S) in response to atmospheric drought faster than trees with low G (S). Our results show that models of forest canopy transpiration can be simplified by incorporating G (S) regulation of minimum leaf water potential for isohydric species.

DOI: 10.1093/treephys/27.1.11
PubMed: 17169902


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species.</title>
<author>
<name sortKey="Ewers, B E" sort="Ewers, B E" uniqKey="Ewers B" first="B E" last="Ewers">B E Ewers</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA. beewers@uwyo.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071</wicri:regionArea>
<placeName>
<region type="state">Wyoming</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mackay, D S" sort="Mackay, D S" uniqKey="Mackay D" first="D S" last="Mackay">D S Mackay</name>
</author>
<author>
<name sortKey="Samanta, S" sort="Samanta, S" uniqKey="Samanta S" first="S" last="Samanta">S. Samanta</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17169902</idno>
<idno type="pmid">17169902</idno>
<idno type="doi">10.1093/treephys/27.1.11</idno>
<idno type="wicri:Area/Main/Corpus">003C58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003C58</idno>
<idno type="wicri:Area/Main/Curation">003C58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003C58</idno>
<idno type="wicri:Area/Main/Exploration">003C58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species.</title>
<author>
<name sortKey="Ewers, B E" sort="Ewers, B E" uniqKey="Ewers B" first="B E" last="Ewers">B E Ewers</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA. beewers@uwyo.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071</wicri:regionArea>
<placeName>
<region type="state">Wyoming</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mackay, D S" sort="Mackay, D S" uniqKey="Mackay D" first="D S" last="Mackay">D S Mackay</name>
</author>
<author>
<name sortKey="Samanta, S" sort="Samanta, S" uniqKey="Samanta S" first="S" last="Samanta">S. Samanta</name>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="ISSN">0829-318X</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Plant Leaves (cytology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Transpiration (physiology)</term>
<term>Seasons (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Trees (classification)</term>
<term>Trees (metabolism)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (classification)</term>
<term>Arbres (métabolisme)</term>
<term>Eau (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (cytologie)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Saisons (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Transpiration des plantes (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arbres</term>
<term>Eau</term>
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Transpiration des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Transpiration</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Seasons</term>
<term>Species Specificity</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
<term>Saisons</term>
<term>Spécificité d'espèce</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We investigated interannual variability of canopy transpiration per unit ground area (E (C)) and per unit leaf area (E (L)) across seven tree species in northern Wisconsin over two years. These species have previously been shown to be sufficient to upscale stand-level transpiration to the landscape level during one growing season. Our objective was to test whether a simple plant hydraulic model could capture interannual variation in transpiration. Three species, wetland balsam fir (Abies balsamea (L.) Mill), basswood (Tilia Americana L.) and speckled alder (Alnus rugosa (DuRoi) Spreng), had no change in E (C) or E (L) between 2000 and 2001. Red pine (Pinus resinosa Ait) had a 57 and 19% increase in E (C) and E (L), respectively, and sugar maple (Acer saccharum Marsh) had an 83 and 41% increase in E (C) and E (L), respectively, from 2000 to 2001. Quaking aspen (Populus tremuloides Michx) had a 50 and 21% decrease in E (C) and E (L), respectively, from 2000 to 2001 in response to complete defoliation by forest tent caterpillar (Malascoma distria Hüber) and subsequent lower total leaf area index of the reflushed foliage. White cedar (Thuja occidentalis L.) had a 20% decrease in both E (C) and E (L) caused by lowered surface water in wetlands in 2001 because of lower precipitation and wetland flow management. Upland A. balsamea increased E (L) and E (C) by 55 and 53%, respectively, as a result of release from light competition of the defoliated, overstory P. tremuloides. We hypothesized that regardless of different drivers of interannual variability in E (C) and E (L), minimum leaf water potential would be regulated at the same value. Minimum midday water potentials were consistent over the two years within each of the seven species despite large changes in transpiration between years. This regulation was independently verified by the exponential saturation between daily E (C) and vapor pressure deficit (D) and the tradeoff between a reference canopy stomatal conductance (G (S)) and the sensitivity of G (S) to D, indicating that trees with high G (S) must decrease G (S) in response to atmospheric drought faster than trees with low G (S). Our results show that models of forest canopy transpiration can be simplified by incorporating G (S) regulation of minimum leaf water potential for isohydric species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17169902</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0829-318X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>27</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2007</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species.</ArticleTitle>
<Pagination>
<MedlinePgn>11-24</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We investigated interannual variability of canopy transpiration per unit ground area (E (C)) and per unit leaf area (E (L)) across seven tree species in northern Wisconsin over two years. These species have previously been shown to be sufficient to upscale stand-level transpiration to the landscape level during one growing season. Our objective was to test whether a simple plant hydraulic model could capture interannual variation in transpiration. Three species, wetland balsam fir (Abies balsamea (L.) Mill), basswood (Tilia Americana L.) and speckled alder (Alnus rugosa (DuRoi) Spreng), had no change in E (C) or E (L) between 2000 and 2001. Red pine (Pinus resinosa Ait) had a 57 and 19% increase in E (C) and E (L), respectively, and sugar maple (Acer saccharum Marsh) had an 83 and 41% increase in E (C) and E (L), respectively, from 2000 to 2001. Quaking aspen (Populus tremuloides Michx) had a 50 and 21% decrease in E (C) and E (L), respectively, from 2000 to 2001 in response to complete defoliation by forest tent caterpillar (Malascoma distria Hüber) and subsequent lower total leaf area index of the reflushed foliage. White cedar (Thuja occidentalis L.) had a 20% decrease in both E (C) and E (L) caused by lowered surface water in wetlands in 2001 because of lower precipitation and wetland flow management. Upland A. balsamea increased E (L) and E (C) by 55 and 53%, respectively, as a result of release from light competition of the defoliated, overstory P. tremuloides. We hypothesized that regardless of different drivers of interannual variability in E (C) and E (L), minimum leaf water potential would be regulated at the same value. Minimum midday water potentials were consistent over the two years within each of the seven species despite large changes in transpiration between years. This regulation was independently verified by the exponential saturation between daily E (C) and vapor pressure deficit (D) and the tradeoff between a reference canopy stomatal conductance (G (S)) and the sensitivity of G (S) to D, indicating that trees with high G (S) must decrease G (S) in response to atmospheric drought faster than trees with low G (S). Our results show that models of forest canopy transpiration can be simplified by incorporating G (S) regulation of minimum leaf water potential for isohydric species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ewers</LastName>
<ForeName>B E</ForeName>
<Initials>BE</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA. beewers@uwyo.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mackay</LastName>
<ForeName>D S</ForeName>
<Initials>DS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Samanta</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17169902</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/27.1.11</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wyoming</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Mackay, D S" sort="Mackay, D S" uniqKey="Mackay D" first="D S" last="Mackay">D S Mackay</name>
<name sortKey="Samanta, S" sort="Samanta, S" uniqKey="Samanta S" first="S" last="Samanta">S. Samanta</name>
</noCountry>
<country name="États-Unis">
<region name="Wyoming">
<name sortKey="Ewers, B E" sort="Ewers, B E" uniqKey="Ewers B" first="B E" last="Ewers">B E Ewers</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003B44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003B44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17169902
   |texte=   Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17169902" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020